Surname

Centre Number Candidate Number

Other Names

GCE AS/A level

1091/01

CHEMISTRY – CH1

A.M. FRIDAY, 23 May 2014

1 hour 30 minutes

	For Ex	e only	
	Question	Maximum Mark	Mark Awarded
Section A	1. to 7.	10	
Section B	8.	14	
	9.	11	
	10.	14	
vill need a:	11.	17	
VJEC. S vou require	12.	14	
jes jes equilor	Total	80	

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- calculator;
- copy of the Periodic Table supplied by WJEC.
 Refer to it for any relative atomic masses you require.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer **all** questions in the spaces provided.

Section B Answer all questions in the spaces provided.

Candidates are advised to allocate their time appropriately between **Section A (10 marks)** and **Section B (70 marks)**.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The *QWC* label alongside particular part-questions indicates those where the Quality of Written Communication is assessed.

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

	SECTION A	Examine only							
	Answer all questions in the spaces provided.								
1.	Complete the electronic structure for the sulfide ion present in Na ₂ S. 1s ²								
2.	Which isotope is the standard used in defining relative atomic masses? [1]								
3.	State one example of an industrially or environmentally important heterogeneous catalyst. You should identify the reaction catalysed and name the catalyst. [1]								
4.	Hydrated sodium carbonate has the formula $Na_2CO_3.10H_2O$. (<i>a</i>) Calculate the relative molecular mass (M_r) of $Na_2CO_3.10H_2O$. [1]								
	(b) Calculate the mass of $Na_2CO_3.10H_2O$ needed to make 250 cm^3 of a 0.10 mol dm ⁻³ solution. [1]	3							
	<i>Mass</i> = g								
	0 2 © WJEC CBAC Ltd. (1091-01)								

© WJEC CBAC Ltd.

BLANK PAGE

5

PLEASE DO NOT WRITE ON THIS PAGE

Examiner A student said that the ionisation energy of hydrogen could be calculated using the Balmer (C) Series of lines. (i) In which part of the electromagnetic spectrum does the Balmer Series appear? [1] [2] (ii) Explain whether or not this student was correct. The diagram shows part of a plot of the first ionisation energy of elements against their (d) atomic numbers. Letters **Q**–**T** do **not** represent the symbols of the elements. First ionisation energy/kJ mol⁻¹ Atomic number of element Write the equation for the change occurring for the first ionisation energy of element (i) Q. [1] In which group of the Periodic Table is element R found? (ii) [1] (iii) Explain why the first ionisation energy of **S** is greater than that of **T**. [3] QWC [1] Total [14]

7

only

Examiner only 10. The decomposition of dinitrogen(IV) oxide into nitrogen(IV) oxide is a reversible reaction that establishes a dynamic equilibrium. $\Delta H = +57 \text{ kJ mol}^{-1}$ $N_2O_4(g)$ $2NO_2(g)$ \Rightarrow pale yellow dark brown State the meaning of the term dynamic equilibrium. (a) [1] (b) The conditions applied to an equilibrium mixture of dinitrogen(IV) oxide and nitrogen(IV) oxide were changed. For each of the following, state what was seen and explain any change that occurred. [5] Temperature increased Pressure increased A catalyst was added

<i>(c)</i> Hy	drazine, N_2H_4 , is an unstable liquid that decomposes according to the following to the	owing
eq	uation.	
	$N_2H_4(I) \longrightarrow N_2(g) + 2H_2(g)$	
(i <u>)</u>) Calculate the volume of gas that could be obtained from 14 kg of hydrazine. Assume that the volume of 1 mol of gas is 24.0 dm ³ .	[3]
(ii)	<i>Volume of gas</i> = One use of hydrazine is as a fuel in rockets. Apart from any energy changes,	. dm ³ state
	one feature of this reaction that suggests it would be useful in rocket propulsi	on. [1]
<i>(d)</i> Nit	rogen (IV) oxide reacts with water.	
	$H_2O + 2NO_2 \longrightarrow HNO_2 + HNO_3$	
Во	th nitric(III) acid, HNO_2 , and nitric(V) acid, HNO_3 , are described as being acids.	
(i)) Define an <i>acid</i> .	[1]
(ii)) Complete the equation to show nitric(III) acid behaving as an acid.	[1]
	$HNO_2 + H_2O \longrightarrow$	
(iii)) When concentrated nitric(V) acid is mixed with concentrated sulfuric acid reaction shown below occurs.	d the
	$HNO_3 + H_2SO_4 \longrightarrow H_2NO_3^+ + HSO_4^-$	
	Explain this reaction in terms of acid-base behaviour.	[2]
	Tota	al [14]
		over

Examiner **11**. *(a)* Ethanol, C₂H₅OH, is a liquid at room temperature. It is being increasingly used as a fuel. Write the equation that represents the standard molar enthalpy change of formation (i) $(\Delta H_{\rm f})$ of ethanol. [1] (ii) Suggest why this enthalpy change cannot be measured directly. [1] (b) Enthalpy changes of combustion can often be measured directly. The equation for the reaction which represents the enthalpy change of combustion (ΔH_c) of ethanol is as follows. 3H₂O(I) $C_2H_5OH(I)$ $3O_{2}(g)$ $2CO_{2}(g)$ + → + A student used the apparatus below to determine the enthalpy change of combustion of ethanol. calorimeter water wick ethanol The student obtained the following results. Mass of spirit burner + ethanol at start $= 72.27 \, g$ Mass of spirit burner + ethanol after combustion = 71.46 gTemperature of water at start = 21.5°C Temperature of water after combustion = 75.5°C Volume of water in calorimeter $= 100 \, \text{cm}^3$ The energy released in the experiment can be calculated using the formula energy released = $mc\Delta T$

m = mass of the water in grams (assume 1 cm^3 has a mass of 1 g) where $c = 4.2 J g^{-1} C^{-1}$ ΔT = change in temperature of the water

12

only

© WJEC CBAC Ltd.

(i) Calculate the energy released in the experiment. [1]
	Energy released =
(ii) The enthalpy change of combustion of ethanol is defined as the energy change per mol of ethanol burned.
	Use your answer to (i) to calculate the enthalpy change of combustion of ethanol. Give your answer in kJ mol ⁻¹ and correct to 3 significant figures . Include the sign. [3]
	$\Delta H_{\rm c}$ of ethanol =
(c) Ar lite	nother student did not carry out an experiment to find ΔH_c of ethanol. He looked up the erature value on a respected internet site.
Ho E>	ow would you expect the numerical values obtained by the two students to differ? splain your answer.
Yo	ou may assume that both values were found under the same conditions of temperature [2]

	The students then used the apparatus from (<i>b</i>) to find the enthalpy change of combustion of higher relative molecular mass alcohols. They found that as the number of carbon atoms increased the value of the enthalpy change of combustion became more negative.					
	 (i) Write the equation for the reaction which represents the enthalpy change of combustion of propanol, C₃H₇OH. [1] 					
	 (ii) In terms of bond strengths, explain why enthalpy changes of combustion are negative. 					
	 (iii) Explain why the enthalpy change of combustion of propanol is more negative than that of ethanol. 					
e)	Recent research has been carried out to find economic and environmentally friendly uses for waste straw and wood chippings. The process of gasification involves the material being partly combusted at a temperature of about 700 °C to give a mixture consisting mainly of hydrogen and carbon monoxide but					
	Another approach has been to use enzyme catalysed reactions to change the waste material into glucose and then to ethanol.					
	Comment on the economic and environmental factors involved in both of these [4] [4] [4] [4] [4] [4] [4] [4] [4] [4]					

BLANK PAGE

15

PLEASE DO NOT WRITE ON THIS PAGE

Examiner only 12. Hydromagnesite is a mixture of magnesium carbonate and soluble impurities. A student crushed some hydromagnesite and added a sample of mass 0.889g to excess dilute hydrochloric acid so that the magnesium carbonate component reacted fully. Explain why the rock was crushed before being added to the acid. [1] (a) (b) Write the equation for the reaction between magnesium carbonate and dilute hydrochloric acid. [1] (C) The gas formed was collected in a gas syringe and its volume was measured over a period of time. The volumes and times were plotted. The volume of 1 mol of gas under these conditions is 24.0 dm³. 200 Volume 150 CO_2/cm^3 100 50 0 5 10 15 20 25 30 Time/minutes Describe what happened to the rate of the reaction over the 30 minute period. Explain why any changes in the rate occurred. [3]

Other than by using an indicator, how would the student know that hydrochloric acid was Use the graph to calculate how many moles of magnesium carbonate reacted with

Percentage of magnesium carbonate = %

Number of moles MgCO₃ = mol

(d)

(e)

in excess?

(i)

the hydrochloric acid.

Examiner only

[1]

[2]

© WJEC CBAC Ltd.

(1091-01)

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only
	l	
	l	

	Only
	1
	-

GCE AS/A level

CHEMISTRY – PERIODIC TABLE FOR USE WITH CH1

A.M. FRIDAY, 23 May 2014

		Period	~		RAC Ltd.	寸	LO	ں ق	~		
	~	s Blc	1.01 Hydrogen 1	6.94 Li Lithium 3	23.0 Na Sodium	39.1 K Potassium 19	85.5 Rb Rubidium 37	133 Cs Caesium 55	(223) Fr B7 87		
	7) ock		9.01 Be Beryllium	24.3 Mg Magnesium 12	40.1 Ca Calcium 20	87.6 Sr Strontium 38	137 Ba Barium 56	(226) Ra Radium 88	► Lar ele	► Ac
						45.0 Sc 21	88.9 Yttrium 39	139 La La La Lanthanum	Actinium 89	ithanoid ments	ctinoid ements
						47.9 Ti Titanium 22	91.2 Zr Zirconium 40	179 Hf Hafnium 72		140 Cerium 58	232 Th Thorium 90
						50.9 V Vanadium 23	92.9 Nb Niobium 41	181 Ta Tantalum 73		141 Pr 59	(231) Pa Protactinium 91
				δ ^Ż		52.0 Cr Chromium 24	95.9 NO Molybdenum 42	184 W Tungsten 74		144 Neodymium 60	238 U Uranium 92
Ŧ	Gro		Key	Ar mbol	d Blc	54.9 Mn Manganese 25	98.9 Tc Technetium	186 Re Rhenium 75		(147) Promethium 61	(237) Neptunium 93
EPE	dnu		lative	tomic ass atomic umber	, XX	55.8 Fe Iron 26	101 Ruthenium 44	190 Osmium 76		150 Sm 62 62	(242) Pu Plutonium 94
RIOI						58.9 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77		(153) Eu Europium 63	(243) Am Americium 95
						58.7 Ni Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	fBlo	157 Gd Gadolinium 64	(247) Cm Ourium 96
'ABL						63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	ock	159 Tb Terbium 65	(245) BK Berkelium 97
щ			·			65.4 Zn 30	112 Cd Cadmium 48	201 Hg Mercury 80		163 Dy Dysprosium 66	(251) Cf Californium 98
	ო	,		10.8 B 5	27.0 Al Aluminium 13	69.7 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81		165 Ho Holmium 67	(254) ES Einsteinium 99
	4	d B	12.0 C Carbon	28.1 Si Silicon 14	72.6 Ge Germanium 32	119 Sn 50	207 Pb Lead		167 Er Erbium 68	(253) Fm Fermium 100	
	S		14.0 N Nitrogen	31.0 Phosphorus 15	74.9 AS Arsenic	122 Sb Antimony 51	209 Bi 83		169 Thulium 69	(256) Md Mendetevium 101	
	9		ock	16.0 Oxygen 8	32.1 S Sulfur 16	79.0 Se 34	128 Te Tellurium 52	(210) PO 84		173 Yb 70	(254) Nobelium 1 102
	2			19.0 F Fluorine 9	35.5 CI Chlorine	79.9 Br Bromine	127 lodine 53	(210) At Astatine 85	, 	175 Lu -utetium 71	(257) Lr awrencium 103
	0		Helium 2	20.2 Ne 10	40.0 Ar Argon 18	83.8 Kr Krypton 36	131 Xe Xenon 54	(222) Rn Radon 86			
									-		